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Abstract
In the present paper, the governing equations for two-temperature generalized poro-
thermoelasticity are formulated in accordance with Green and Naghdi theory of 
thermoelasticity without energy dissipation. Two-dimensional plane wave solution 
of these governing equations indicates the existence of one shear vertical and four 
coupled longitudinal waves in porothermoelastic medium. A problem on reflection 
of longitudinal and shear waves is considered at a thermally insulated and stress-free 
surface of a generalized porothermoelastic solid half-space. The appropriate poten-
tials for incident and reflected waves satisfy the required boundary conditions at free 
surface of the half-space and a non-homogeneous system of five equations in reflec-
tion coefficients is obtained. The expressions for energy ratios of reflected waves are 
obtained for incidence of both longitudinal and shear waves. The numerical results 
are obtained for values of porosity lying between 0.01 and 0.5, which are suitable 
for most of rocks present in the earth’s crust. The experimental data of kerosene-
saturated sandstone are selected for numerical computations to observe the effects 
of two-temperature parameters and porosity on the energy ratios of reflected waves.

Keywords Energy ratios · Green–Naghdi theory · Plane waves · 
Porothermoelasticity · Reflection · Two-temperature

1 Introduction

Biot  [1] developed the theory of poroelasticity, which has been applied in most 
investigations on wave propagation in fluid-saturated rocks. Biot  [2, 3] ana-
lyzed the isothermal wave propagation in fluid-saturated elastic porous media for 
both high and low frequency ranges. He showed the existence of two longitudinal 
waves and one shear wave, which are dispersive and dissipative. Thereafter, many 
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research workers including [4–30] contributed toward wave propagation phenomena 
in poroelasticity. Some problems on numerical simulations in porous media were 
attempted [31–34].

Wave propagation problems in saturated thermoelastic porous medium have many 
applications in various engineering fields including petroleum engineering, chemi-
cal engineering, pavement engineering and nuclear waste management. Biot  [35] 
formulated the general laws of thermoelasticity and principle of minimum entropy 
production. These laws and principle proved a basis for many researches in saturated 
thermoelastic porous medium [36–55].

Chen and Gurtin [56] and Chen et al. [57, 58] developed a coupled linear theory 
of thermoelasticity involving the conductive and thermodynamic temperatures. This 
two-temperature theory of thermoelasticity reduces to classical theory of thermoe-
lasticity when the conductive temperature equals to the thermodynamic temperature. 
Using this two-temperature theory, Warren and Chen [59] and Puri and Jordan [60] 
investigated the wave propagation problems to examine several measures of wave 
fields. Youssef  [61, 62] developed theories of two-temperature thermoelasticity in 
context of Lord and Shulman [63] and Green and Naghdi  [64] models. In context 
of these theories, various wave propagation problems were investigated by many 
researchers [65–69].

In contrast to the classical thermoelasticity associated with Fourier’s law of heat 
conduction, the main feature of Green and Naghdi [64] theory is that the heat flow 
does not involve energy dissipation. Youssef  [45] developed the governing equa-
tions of thermoelastic porous medium in the context of Lord-Shulman [63] theory 
of generalized thermoelasticity with one relaxation time. The main objective of this 
paper is to formulate a two-temperature porothermoelasticity without energy dissi-
pation. In Sect. 2, a set of governing equations of two-temperature thermoelasticity 
of porous medium without energy dissipation is developed in context of theories 
proposed by Youssef [45, 62] and Green and Naghdi [64]. In Sect. 3, the governing 
equations are specialized in (x, y) plane and solved for plane waves. It is shown that 
there exist one shear vertical and four longitudinal waves in a two-dimensional poro-
thermoelastic solid half-space. In Sects. 4 and 5, a reflection phenomenon of plane 
waves is studied at a thermally insulated and stress-free surface of a half-space. The 
relations between reflection coefficients and the analytical expressions for energy 
ratios are obtained. In Sect. 6, the numerical computations are carried out for rock 
materials having porosity between 0.01 and 0.5. The experimental data of kerosene-
saturated sandstone are used to graphically illustrate the dependence of energy ratios 
of reflected waves on two-temperature parameters and porosity. The theoretical and 
numerical results are summarized in the last section.

2  Governing Equations

In context of theories proposed by Green and Naghdi [64] and Youssef [45, 62], the 
governing equations of a linear, homogeneous and isotropic two-temperature gener-
alized porothermoelasticity without energy dissipation in the absence of body forces 
and heat sources, can be expressed as 
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(a) Constitutive equations 

(b) Equations of motion 

(c) Heat Equations 

 where R11, R12, R21, R22, and J are mixed and thermal coefficients. CE
s, CE

f  are 
specific heats of phases at constant strain. ui, Ui are displacements of the skeleton 
and fluid phases. Ks, Kf  are characteristics of Green and Naghdi theory for solid 
and fluid phases, respectively. �11 = �s − �12 is mass coefficient of solid phase. 
�22 = �f − �12 is mass coefficient of fluid phase. �12 is dynamic coupling coeffi-
cient. �f = ��f ∗ is density of fluid phase per unit volume of the bulk. �s = (1 − �)�s∗ 
is density of solid phase per unit volume of the bulk. �f ∗ , �s∗ are densities of the 
fluid and solid phases. � is porosity of material. �,�, R, and Q are poroelastic  
coefficients. F11 = 𝜌sCE

s
, F22 = 𝜌f CE

f
, F12 = F21 = −JT0,Θs = Ts − T0, (|

Θs

T0

| << 1),Θf = Tf − T0, (|
Θf

T0

| << 1) ,  
where in the reference state Ts = Tf = T0 . The conductive temperatures Φs,Φf  sat-
isfy the following relations 

where a∗s and a∗f  are two-temperature parameters of solid and fluid phases, 
respectively.
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3  Velocity Equations

We consider a porothermoelastic solid half-space in x − y plane, whose traction-free 
surface is along x-axis and positive y-axis is taken into the half-space. Using the 
following Helmholtz [70] decomposition, the displacement components of skeleton 
and fluid phases are

Using (9) and (10), Eqs. 4 to 8 are written in x − y plane as

where ∇2 =
�2

�x2
+

�2

�y2
.

The solutions of the Eqs. 11 to 17 are now sought in the following form of har-
monic traveling wave

in which v is the complex phase speed, k is the wave number, (sin �, cos �) denotes 
the projection of the wave normal onto x − y plane. �̄�s, �̄�f , �̄� s, �̄� f , Φ̄s, and Φ̄f  are 
constants.

(9)u1 =
��s

�x
−

�� s

�y
, u2 =

��s

�y
+

�� s

�x
,

(10)U1 =
��f

�x
−

�� f

�y
, U2 =

��f

�y
+

�� f

�x
.

(11)(� + 2�)∇2�s + Q∇2�f − R11Θ
s − R12Θ

f =
�2

�t2
(�11�

s + �12�
f ),

(12)�∇2� s =
�2

�t2
(�11�

s + �12�
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(13)R∇2�f + Q∇2�s − R21Θ
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f =
�2

�t2
(�12�

s + �22�
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(14)�2

�t2
(�12�
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f ) =0,

(15)Ks∇2Φs =
�2
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(16)Kf∇2Φf =
�2

�t2
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(17)Θs =(1 − a∗s∇2)Φs, Θf = (1 − a∗f∇2)Φf ,

(18){𝜙s, 𝜙f , 𝜓 s, 𝜓 f , Φs, Φf } = {�̄�s, �̄�f , �̄� s, �̄� f , Φ̄s, Φ̄f }e𝜄k(sin 𝜃x+cos 𝜃y−vt),
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With the help of Eq.  18, Eqs.  11 to 17 lead to the following two velocity 
equations,

where the expressions for A, B, C, D and E are given in Appendix 1. The Eq. 19 is 
solved numerically by Ferrari’s method, which gives four complex values of v2 or 
the complex phase velocities vj, (j = 1, 2,… , 4) of four coupled longitudinal waves 
in generalized porothermoelasticity, which we may call as P1, P2, P3 and P4 waves. 
For a particular value of j, the complex phase velocity vj = vR + ivI , defines the real 
phase velocity Vj =

vR
2+vI

2

vR

 and the attenuation quality factor Qj
−1 = −

2vI

vR

 for the cor-
responding wave. We call real phase velocity Vj as phase velocity in the remaining 
analysis. The velocity equation (20) corresponds to the phase velocity V5 of the shear 
wave. In particular case, if we put Ks = Kf = 0, R11 = R12 = R21 = R22 = 0, a∗s = a∗f = 0 , 
Eq. 19 reduces to

which gives the same two roots as obtained by Hajra and Mukhopadhyay  [9] for fast 
and slow P waves.

4  Reflection from Free Surface

A reflection phenomenon of incident longitudinal and shear waves is considered 
at a thermally insulated and stress-free surface of a Green–Naghdi type porother-
moelastic solid half-space with two-temperature. Incident P1 or SV waves gets 
reflected from thermally insulated and stress-free surface and five reflected waves 
P1, P2, P3, P4 and SV waves are obtained as shown in Fig. 1.

The relevant boundary conditions at the free surface y = 0 are

where

(19)A(v2)
4
+ B(v2)

3
+ C(v2)

2
+ D(v2) + E = 0,

(20)v2 =
�22�

�11�22 − �12
2

,

(21)
(�11�22 − �12

2)�2 − {(� + 2�)�22 + R�11 − 2Q�12}� + {(� + 2�)R − Q2} = 0,

(22)�22 = 0, �12 = 0, � = 0,
�Φs

�y
= 0,

�Φf

�y
= 0,
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The appropriate potentials which satisfy the boundary conditions (22) are as

�22 =�
�2�s

�x2
+ (� + 2�)

�2�s

�y2
+ 2�

�2� s

�x�y
+ Q

(
�2�f

�x2
+

�2�f

�y2

)

− R11

[

Φs − a∗s

(
�2Φs

�x2
+

�2Φs

�y2

)]

− R12

[

Φf − a∗f

(
�2Φf

�x2
+

�2Φf

�y2

)]

,

�12 =�

(

2
�2�s

�x�y
+

�2� s

�x2
−

�2� s

�y2

)

,

� =R

(
�2�f

�x2
+

�2�f

�y2

)

+ Q

(
�2�s

�x2
+

�2�s

�y2

)

− R21

[

Φs − a∗s

(
�2Φs

�x2
+

�2Φs

�y2

)]

− R22

[

Φf − a∗f

(
�2Φf

�x2
+

�2Φf

�y2

)]

.

(23)

�s =A0exp{ik1(sin �0x − cos �0y − V1t)}

+

4∑

i=1

Aiexp{iki(sin �ix + cos �iy − Vit)},

(24)

�f =�1A0exp{ik1(sin �0x − cos �0y − V1t)}

+

4∑

i=1

�iAiexp{iki(sin �ix + cos �iy − Vit)},
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i=1
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Fig. 1  Geometry showing directions of incident and reflected waves with normal to stress-free and ther-
mally insulated surface
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where the expressions of �i, �i and �i (i = 1, 2,…, 4) are given in Appendix 2.
The potentials (23) to (27) satisfy the boundary conditions (22) if following relations 

(Snell’s law) hold at y = 0,

and, we obtain a non-homogenous system of five equations as

where for m = 1, 2,… .5,

and, for incident P1 wave (k∗ = k1),

(26)

Φf =�1A0exp{ik1(sin �0x − cos �0y − V1t)}

+
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(27)
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,
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and, for incident SV wave (k∗ = k5),

where Z1, Z2, Z3, Z4 and Z5 are reflection coefficients (amplitude ratios) of the 
reflected P1, P2, P3, P4 and SV waves, respectively.

5  Energy Ratios

Following Achenbach [71], the rate of energy transmission per unit surface area is 
given by

Using Eq. 31, the expressions of energy ratios for all reflected waves are obtained as 

Case (a): Incident P1 waves

Case (b): Incident SV waves

where

In absence of thermal parameters, the relations (30) between reflection coef-
ficients and energy ratio expressions (32) and (33) reduce to those obtained by 
Hajra and Mukhopadhyay  [9]. Also, for � = 0 and � = 1 , the above wave char-
acteristics analysis (speeds, reflection coefficients and energy ratios) reduces to 
those for the cases of solid phase and fluid phase, respectively. In case of � = 0 , 
there exist three reflected plane waves as P1 , P3 and SV waves for incident P1 

b1 =a15, b2 = −a25, b3 = b4 = b5 = 0,
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, Z2 =
A2
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,
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Y1

Y0

Z2
5
,
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5
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or SV wave. For � = 1 , there exist three reflected plane waves as P2 , P4 and SV 
waves when P2 or SV waves are incident.

6  Numerical Results and Discussion

For numerical computations, a program in Fortran software is developed and the fol-
lowing experimental values of physical parameters of kerosene-saturated sandstone 
are taken from Yew and Jogi [72]

The ratio of volumes of pore space to bulk space in a rock is called porosity. The 
porosity in most rocks lies in the range between less than 0.01 and 0.5. For present 
illustrations, the value of porosity is taken in the range between 0.01 and 0.5.

For the incidence of P1 wave, the energy ratios of reflected waves are computed 
using Eqs. 30, 32 and 33. The energy ratios of reflected P1, P2, P3, P3 and SV waves 
are shown graphically in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 against the angle of inci-
dence �0(1

◦ − 90◦) for different sets of two-temperature parameters with porosity 
� = 0.4 . In these figures, five sets, I   (a∗s = 0, a∗f = 0) ; II   (a∗s = 0.4, a∗f = 0) ; 
III   (a∗s = 0.8, a∗f = 0) ; IV   (a∗s = 0, a∗f = 0.4) and V   (a∗s = 0, a∗f = 0.8) , of 
two-temperature parameters are considered. In Figs. 2 and 3, the energy ratio of 

Q = 0.99663 × 1011 dyne ⋅ cm−2, R = 0.07435 × 1011 dyne ⋅ cm−2,

� = 0.44363 × 1011 dyne ⋅ cm−2, � = 0.2765 × 1011 dyne ⋅ cm−2,

�f
∗ = 0.82 g ⋅ cm−3, �s

∗ = 2.6 g ⋅ cm−3, �11 = 0.002137 g ⋅ cm−3,

Ks = 0.4 cal ⋅ cm−1
⋅ s−1

⋅
◦C−1, Kf = 0.3 cal ⋅ cm−1

⋅ s−1
⋅
◦ C−1,

CE
s = 2.1 cal ⋅ g−1

⋅
◦ C−1, CE

f = 1.9 cal ⋅ g−1
⋅
◦ C−1, T0 = 27 ◦C,

�s = 0.01 cm3
⋅ g−1, �f = 0.02 cm3

⋅ g−1, �sf = 0.03 cm3
⋅ g−1,

�fs = 0.04 cm3
⋅ g−1, �0

s = �0
f = 0.005 s, � = 2 Hz.

Fig. 2  Effect of two-temperature 
parameter a∗s on energy ratios 
of reflected P1 wave for different 
sets of two-temperature param-
eters when porosity � = 0.4
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Fig. 3  Effect of two-temperature 
parameter a∗ f  on energy ratios 
of reflected P1 wave for different 
sets of two-temperature param-
eters when porosity � = 0.4

Fig. 4  Effect of two-temperature 
parameter a∗s on energy ratios 
of reflected P2 wave for different 
sets of two-temperature param-
eters when porosity � = 0.4

Fig. 5  Effect of two-temperature 
parameter a∗ f  on energy ratios 
of reflected P2 wave for different 
sets of two-temperature param-
eters when porosity � = 0.4
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Fig. 6  Effect of two-temperature 
parameter a∗s on energy ratios 
of reflected P3 wave for different 
sets of two-temperature param-
eters when porosity � = 0.4

Fig. 7  Effect of two-temperature 
parameter a∗ f  on energy ratios 
of reflected P3 wave for different 
sets of two-temperature param-
eters when porosity � = 0.4

Fig. 8  Effect of two-temperature 
parameter a∗s on energy ratios 
of reflected P4 wave for different 
sets of two-temperature param-
eters when porosity � = 0.4
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Fig. 9  Effect of two-temperature 
parameter a∗ f  on energy ratios 
of reflected P4 wave for different 
sets of two-temperature param-
eters when porosity � = 0.4

Fig. 10  Effect of two-temper-
ature parameter a∗s on energy 
ratios of reflected SV wave for 
different sets of two-temperature 
parameters when porosity 
� = 0.4

Fig. 11  Effect of two-temper-
ature parameter a∗ f  on energy 
ratios of reflected SV wave for 
different sets of two-temperature 
parameters when porosity 
� = 0.4
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reflected P1 wave for set I (a∗s = 0, a∗f = 0) is 0.98366 at �0 = 1◦ and decreases 
monotonically with increasing angle of incidence and attains a minimum value 
0.12824 at �0 = 64◦ . Thereafter, it increases monotonically to its maximum value 
at �0 = 90◦ (grazing incidence). In Figs. 4 and 5, the energy ratio of reflected P2 
wave for set I is 0.04024 at �0 = 1◦ and it decreases monotonically to its mini-
mum value 0.14258e-04 at �0 = 46◦ . Beyond �0 = 46◦ , it increases sharply to its 
maximum value 0.0739 at �0 = 81◦ and then decreases monotonically. In Figs. 6 
and 7, the energy ratio of reflected P3 wave for set I is 0.75995e-05 at �0 = 1◦ and 
it increases monotonically to its maximum value 0.10694e-04 at �0 = 69◦ . There-
after, it decreases sharply to its minimum value at �0 = 90◦ . In Figs.  8 and  9, 
the energy ratio of reflected P4 wave for set I is 0.34919e-06 at �0 = 1◦ and it 
increases monotonically to its maximum value 0.17133e-05 at �0 = 73◦ . Thereaf-
ter, the energy ratio of reflected P4 wave decreases very sharply to its minimum 
value at grazing incidence. In Figs.  10 and 11, the energy ratio of reflected SV 
wave is 0.39505e-05 at �0 = 1◦ and it increases monotonically and sharply to its 
maximum value 0.34095 at �0 = 70◦ . Thereafter, it decreases sharply to its mini-
mum value at grazing incidence. For other sets (II, III, IV and V) of two-tempera-
ture parameters, the energy ratio variations of all reflected waves are similar to set 
I. On comparing variations for set I with those of sets II and III in Figs. 2, 4, 6, 8 
and 10, the effect of two-temperature parameter a∗s is observed on reflected lon-
gitudinal and shear waves. Also, on comparing variations for set I with those for 
sets IV and V in Figs. 3, 5, 7, 9 and 11, the effect of two-temperature parameter 
a∗f  is observed on reflected longitudinal and shear waves.

The energy ratios of reflected P1, P2, P3, P3 and SV waves are also graphi-
cally illustrated in Figs.  12 , 13, 14, 15, and  16 against the angle of incidence 
�0 (1

◦ − 90◦) for different values of porosity � , when a∗s = 0.3, and a∗f = 0.3. The 
thick solid, thin solid and dashed curves in these figures correspond to � = 0.3, 0.4 
and 0.5, respectively. The effect of porosity on energy ratios of reflected waves is 
observed at every incident angle ranging between �0 = 1◦ and �0 = 89◦ . However, 
no effect of porosity is observed at grazing incidence ( �0 = 90◦).

Fig. 12  Effect of porosity on 
energy ratios of reflected P1 
wave when a∗s = 0.3, a∗ f = 0.3
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Fig. 13  Effect of porosity on 
energy ratios of reflected P2 
wave when a∗s = 0.3, a∗ f = 0.3

Fig. 14  Effect of porosity on 
energy ratios of reflected P3 
wave when a∗s = 0.3, a∗ f = 0.3

Fig. 15  Effect of porosity on 
energy ratios of reflected P4 
wave when a∗s = 0.3, a∗ f = 0.3
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7  Conclusions

The Green and Nagdhi theory of thermoelasticity is applied for formulating the 
governing equations of two-temperature porothermoelasticity without energy dis-
sipation. The governing equations are specialized for a plane and are solved for 
plane wave solutions. It is found that there exist one shear and four coupled lon-
gitudinal waves in a half-space model. A problem on reflection of plane waves is 
studied at a thermally insulated and traction-free surface. For incident longitu-
dinal or shear wave, the relations between reflection coefficients and the expres-
sions of energy ratios for reflected waves are obtained analytically. In case of 
incident P1 wave, the energy ratios of all reflected waves are computed and graph-
ically illustrated for different sets of two-temperature parameters and for different 
values of porosity. The energy ratios of reflected waves are affected due to change 
in values of two-temperature parameters and porosity. However, the effects of 
two-temperature parameters and porosity on energy ratios of reflected P1 and SV 
waves are observed less as compared to other reflected longitudinal waves. In 
absence of thermal parameters, the present theoretical expressions and numerical 
results agree with those obtained by Hajra and Mukhopadhyay [9]. In absence of 
thermal effects, the reflected P3 and P4 waves do not exist and P1 and P2 waves 
correspond to fast-P and slow-P waves, respectively. For illustrations of numeri-
cal results, a model of kerosene-saturated sandstone is taken with porosity lying 
in the range between 0.01 and 0.5. The numerical results are obtained in terms of 
energy ratios of reflected waves. The sum of energy ratios of all reflected waves 
is found less than or equal to one at each angle of incidence. It is also observed 
that the P2 and P4 waves will not appear for porosity � = 0 . Similarly for poros-
ity � = 1 , the P1 and P3 waves will not exist. These above facts may be helpful for 
validating the present model. Such theoretical investigations are expected to be 
useful for detecting and studying the porous layers saturated with groundwater or 
oil.

Fig. 16  Effect of porosity on 
energy ratios of reflected SV 
wave when a∗s = 0.3, a∗ f = 0.3
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Appendices

Appendix 1

The expressions for A, B, C, D and E have been obtained as

where K∗s =
Ks

1+a∗sk2
 and K∗s =

Kf

1+a∗f k2
.

Appendix 2

The expressions for �i, �i and �i (i = 1, 2,…, 4) are derived as

A = (�11�22 − �2
12
)(F11F22 − F12F21),

B = (F12F21 − F11F22)[�22(� + 2�) + �11R − 2�12Q]

+ (K∗sF22 + K∗f F11)(�
2
12
− �11�22)

+ T0[F11(2�12R12R22 − �11R2
22
− �22R2

12
) + F22(2�12R11R21 − �22R2

11
− �11R2

21
)

+ (F12 + F21)(�22R11R22 + �11R21R22 − �12R12R21 − �12R11R22)],

C = (F11F22 − F12F21)[(� + 2�)R − Q2](K∗sF22 + K∗f F11)[(� + 2�)�22

+ �11R − 2�12Q]

+ K∗sT0[�11R2
22
+ �22R2

12
− 2�12R12R22] + K∗f T0[�11R2

21
+ �22R2

11
− 2�12R11R21]

+ K∗sK∗f (�11�22 − �12
2) + T2

0
(R2

11
R2

22
+ R2

12
R2

21
− 2R11R21R12R22)

+ T0[(� + 2�){R2
21

F22 + R2
22

F11 − R21R22(F12 + F21)}

+ Q{(F12 + F21)(R11R22 + R12R21) − 2R11R21F22 − 2R12R22F11}

+ R{R2
11

F22 + R2
12

F11 − R11R12(F12 + F21)}],

D = − K∗sK∗f [�22(� + 2�) + �11R − 2�12Q] + K∗s[Q2F22 + 2QR12R22 − RR2
12

− (� + 2�)(T0R2
22
+ RF22)] + K∗f [Q2F11 + 2QR11R21 − RR2

11

− (� + 2�)(T0R2
21
+ RF11)],

E = K∗sK∗f [R(� + 2�) − Q2],

(34)

�i = −

[
ΔT0R11Vi

2 + (K∗s − Vi
2F11)(R22W1 − R12W2) + F12Vi

2(R21W1 − R11W2)

ΔT0R21Vi
2 + (K∗s − Vi

2F11)(R22W2 − R12W3) + F12Vi
2(R21W2 − R11W3)

]

,
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