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h i g h l i g h t s

� Evaluated conventionally used indices: heavy metal pollution index, contamination index and heavy metal evaluation index.
� Developed of a new indexing approach, heavy metal contamination index (HCI), with a set of six distinct water classes.
� Assigned weightage to heavy metal parameters through Delphi’s method for computing HCI.
� Applied chemometric techniques for distinguishing various sources of heavy metal contamination.
� Integrated HCI with cluster analysis for verifying possible factors and extent of groundwater contamination.
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a b s t r a c t

Three indexing methods, namely heavy metal pollution index (HPI), contamination index (Cd) and heavy
metal evaluation index (HEI), are commonly used for heavy metal evaluation in groundwater. These
methods have several limitations. In HPI, 14 out of 15 groundwater samples collected in the study area of
Nalagarh valley, Himachal Pradesh, India qualify for drinking purposes with their values varying between
10.73 and 107.50 (critical limit ¼ 100), while in Cd, the same number of samples (>90%) are rejected as
their values (Cd ¼ 1.31e37.87) exceed the critical limit of 3. HEI varies from 10.31 to 46.87 with a mean of
26.06, but since it does not have a defined critical limit, quality assessment depends on worker’s
discretion. It thus becomes very confusing as to which indexing method to use. To overcome this
dilemma, a very simple indexing method called ‘heavy metal contamination index (HCI)’ has been
developed on the basis of assigning weight to each heavy metal parameter. A new classification system
with six distinct water classes of different uses too has been proposed considering the regulatory limits,
human health risk and toxicity of the violator parameters. Regression analysis confirms that HCI has
larger number of significantly correlated key parameters compared to the other three indices. Chemo-
metric techniques confirm that Cr, Cu, Fe, Mn and Zn are derived from lithogenic inputs and As, Cd, Ni
and Pb from anthropogenic sources. HCI when integrated with Cluster Analysis gives the best possible
results in identifying factors that influence the various water classes.

© 2019 Published by Elsevier Ltd.

1. Introduction

Methods of integrating numerous water quality variables in a
specific index to assess contamination levels have found wide-
spread uses in environmental science and engineering. Various
pollution indices, namely heavy metal pollution index (HPI),

contamination index (Cd) and heavy metal evaluation index (HEI),
have been used in the past to evaluate the extent of pollution in
groundwater (Mohan et al., 1996; Backman et al., 1997; Prasad and
Bose, 2001; Edet and Offiong, 2002; Mustafa, 2008; Prasanna et al.,
2012; Venkatramanan et al., 2015; Singh et al., 2017; Wagh et al.,
2018). Multivariate chemometric techniques that include prin-
cipal component analysis (PCA) and cluster analysis (CA) are pur-
posefully used to overcome the limitations of these pollution
indices (Lumb et al., 2011; Singh et al., 2014; Herojeet et al., 2016).
These chemometric analytical techniques are considered
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trustworthy and credible approaches for elucidation of complex
data matrices to distinguish between the anthropogenic and nat-
ural sources of pollution in groundwater (Okiongbo and Douglas,
2015; Herojeet et al., 2015; Jacintha et al., 2016; Esmaeili et al.,
2018).

A brief review of these geochemical indexing approaches his-
torically used by various workers is necessary in terms of their
usability and correctness. This contribution tries to apply these
traditionally used indices in appraising the contamination level of
groundwater in heavy metals in a strategically located industrial
area in the foothills of the Himalayas in the northwestern State of
Himachal Pradesh, India (Fig. 1), discusses their limitations and
proposes a new easy-to-use indexing approach that does better
assessment of heavy metal contamination. Also, it proposes a new

classification system that assigns water samples to six distinct
water classes depending on their applicability. Chemometric
techniques have been used to distinguish between the probable
sources of heavy metals in groundwater and integrate the newly
proposed method with cluster analysis in order to identify factors
that influence the water classes.

Foothill zones of the lesser Himalayas due to their geological and
physiographic settings act as the key aquifer recharge areas for the
regions in the south. Therefore, it is essential that the water re-
sources of these foothill zones be preserved as much as possible
from contamination. In fact, better pollution indices are needed to
manage this important recharge area so that industry can advance
without degrading the water resources. The results of this work,
therefore, shall be an eye opener not only for the Indian State of

Fig. 1. Location of the Nalagarh valley, Himachal Pradesh, India.

H. Rajkumar et al. / Chemosphere 245 (2020) 1255982



Himachal Pradesh but also for similar other areas across India and
elsewhere to take suitable measures for striking a fine balance
between environmental sanctity and industrial advancement.

2. Materials and methods

2.1. Study area

Nalagarh, a narrow intermontane valley, with geographical size
of about 250 km2 in Himachal Pradesh, India is taken as the study
area for comparison of the conventionally used indexing ap-
proaches (Fig. 1). Himachal Pradesh is a sub-Himalayan hilly State
with strong focus on industrialization in recent years. Nalagarh
valley has the highest concentration (~70%) of both large scale and
medium scale industries in the State (GoHP, 2012). The designated
region for industrial development in Nalagarh valley is commonly
known as the Baddi-Barotiwala-Nalagarh (BBN) Industrial Belt
(Herojeet et al., 2013) where about 12 different categories of in-
dustries are situated (Table 1). There also are numerous open-cast
mining operations active in the area for quarrying limestone,
minerals and stones, riverbed boulders and sand. In recent years,
many industries from the neighboring and southern States have
shifted to Nalagarh valley due to popular subsidies granted by the
Himachal Pradesh State Government. Many fertile agricultural
lands are being rapidly converted to industrial areas causing an
environmental chaos (GoI, 2012). About 55% of industrial units do
not possess valid legal industrial permits (Anonymous, 2014). As
per a report prepared by the BBN Authority in 2007, about 72% of

industrial units are operating in BBN without Effluent Treatment
Plants (ETP) making the groundwater resources more vulnerable to
pollution (Kamaldeep et al., 2011). A detailed account of the envi-
ronmental status in Nalagarh valley has been given by Rajkumar
et al. (2019). This report presents an assessment of the pollution
menaces in the groundwaters of the Nalagarh valley, and critically
examines the various pollution indices that have been conven-
tionally used historically. Also, it proposes a new indexing method
that not only satisfies the limitations of these indices but also
classifies the collected water samples into various water classes
depending on their usability for domestic purposes.

2.2. Sampling and analysis

Groundwater samples were collected in May 2014 from 15
different sampling locations of Nalagarh valley (Fig. 1). Samples
were collected in good quality (HDP) plastic bottles (1000 ml) with
cover lock usingWhatman filter paper no. 42 (to remove suspended
particles) after pumping for about 10 min to obtain fresh samples.
For the analysis of metal constituents, the samples were acidified
with HNO3 tomaintain pH ~2 in the field. Theywere then preserved
in laboratory at 4 �C until their analysis. Each of these groundwater
samples (50 ml) was digested with 5 ml of concentrated HNO3 at
80 �C until its volume reduced to 20 ml on electric hot plate
(Johnson Delite Company, India). Further, concentrated HNO3
(5 ml) was added and then heated for another 10 min or until the
solution appeared transparent (APHA, 1985). Whatman filter paper
with a diameter of 125 mm and pore size of 2.5 mm was used to

Table 1
List of important industrial units in the Nalagarh valley, Himachal Pradesh, India (after GoHP, 2011).

S.
No.

Category of industrial
manufacturing units

No.
of
Units

Manufacturing products Nature of effluents/wastes

1. Automobile/
engineering/tool
rooms/fabrications

81 Auto and tractor parts, railway products, air and oil filters,
grinder wheels, panel building and fabricating.

Acids, phenols, cyanogens, low pH, alkalies, limestone, oil, fine suspended
solids, cyanides, cyantes, iron salt, ores and coke.

2. Chemicals/acids/
gasses/fire equipment/
powder coating

37 Fuel additives, wood adhesives, aromatics and flavours and
textile chemicals.

Toxic compounds, phenols, high acidity and alkalinity.

3. Cosmetics/soap/
washing items/
perfumes

58 Soaps and detergents, handwash lotions, facial kits,
perfumes and deodorants, mosquito killers.

High BOD, tetra propylene derived alkynes and benzene sulphonate.

4. Electrical& electronics/
Home appliances

121 Batteries, inverters, air conditioners, transformers, CFL
lamps, printer circuit boards, DVDs and VCDs, electrical
appliances and accessories.

Heavy metals such as Cd, Ni, Zn, Pb, plastics and organic compounds such
as polychlorinated biphenyls, polybrominated biphenyls, polybrominated
diphenyl ethers and oils.

5. Food/bakery/
beverages/mineral
water

39 Mineral waters, sweet confectionaries, liquor wines, sharbat
and juices, food and beverage products.

High dissolved solids containing nitrogen, fermented starches and allied
products.

6. Sanitary/hardware/
paints/furniture
products

27 Plyboards, powder coating, paints, primers distempers,
bathroom fittings and laminates mica.

Organic and inorganic reducing agents, silver and alkalies.

7. Leather/footwear 20 Footwears, leather bags, mattresses, moulded insoles,
leather watches and strips.

Cd, Cr, highly salted materials, coloured, dissolved and suspended
matters.

8. Pharmaceuticals/
pesticides/ayurvedic
medicines

258 Pharmaceutical products, pesticide products, x-ray
machines, eye drops and ayurvedic medicines.

Aromatic compounds, highly suspended and dissolved organic matters
such as vitamins, high acidity or alkalinity.

9. Plastic/polymer/
rubber/injection
moulding

118 PVC pipes, plastic bottles, injection moulding, poly films,
HDPE containers, rubber products and thermocoles.

Chlorides, suspended and dissolved solids, variable pH and high BOD.

10 Printing & packing/
paper products/
stationery

178 Corrugated boxes, printing and packaging products, mono
cartons, CFB foils, paper cones, photo copier machines and
their assembling.

Suspended solids, high or low pH, colour, BOD, COD, high temperature
and fibers.

11. Steel & iron/TMT saria/
metal

47 Alloy and non-alloy steel materials, blisters, rounds, solder
wires, brass wires, cadmium bronze wires, pipe fitting
cisterns and sheet covers.

Toxic cyanides, Cd, Cr, Zn, Cu, Al and low pH.

12 Textile/yarn/
readymade garments/
clothes

38 Readymade garments, polyester staple fibers, cotton fibers
and yarn knitting.

Na, organic matter, colour, high pH and fibres.

Source: GoHP, 2011; Kaur, 2014
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filter the digested solution. The solution was then quantitatively
transferred to 50 ml volumetric flask by adding distilled water.

Measures were taken to prevent contamination and enhance
confidence of data for bias and variability. All apparatus and
glasswarewerewashed for 24 hwith 10% HCl and rinsed twicewith
double deionized water. The chemical solutions were prepared
from Merck-GR grade chemicals and reagents using double
deionized water. For calibrating instruments to obtain reliable re-
sults, bank samples were prepared from their stock solutions for
each heavy metal parameter. The samples were analysed three
times and instrumental calibration was done with drift samples for
every 5 samples to ensure accuracy and efficiency for all metal
analysis. The reference materials provided by the National Institute
of Standards and Technology (RM 1643 E) were strictly followed.
The uncertainty error was less than 10% for each heavy metal
parameter analysed.

2.3. Integrated pollution indices for groundwater

The conventionally indexing approaches, namely HPI (Mohan
et al., 1996), Cd (Backman et al., 1997), HEI (Edet and Offiong,
2002) and the newly proposed approach, ‘heavy metal contami-
nation index (HCI)’, have been used to identify the heavy metal
contamination level in groundwater in this study.

2.3.1. Heavy metal pollution index (HPI)
The HPI model developed by Mohan et al. (1996) represents the

composite influence of heavy metals on the total quality of water.
This index establishes a rating or weightage (Wi) between 0 and 1
and is inversely proportional to the standard permissible value (Si)
of the corresponding parameter (Horton, 1965; Brown et al., 1970;
Reddy, 1995; Mohan et al., 1996; Prasad and Kumari, 2008). HPI is
calculated using the formulae:

HPI ¼
Pn

i¼1QiWiPn
i¼1Wi

(1)

whereQi is the sub-index of the ith parameter,Wi is the unit weight
of the ith parameter and n is the number of parameters considered.
The critical pollution index is taken as 100 in this indexing
approach (Prasad and Bose, 2001).

The first step involves computation of relative weight (Wi) for
each metal parameter. Here, Wi is taken as the inverse of
maximum/upper admissible concentrations (MAC), Si is the
maximum permissible limit and li is the ideal value for each pa-
rameters as adopted from Edet and Offiong (2002) (Table 2).

Wi ¼K=MAC (2)

where K (constant of proportionality) 1=
Pn
i¼1

1=MAC

In the second step, the sub-index (Qi) is calculated for each
heavy metal using Eq. (3).

Qi ¼100 � fMið�ÞIig
ðSi � IiÞ

(3)

whereMi ¼measured metal value in the ith sample, Ii ¼ ideal value
or desirable limit of the ith parameter, and Si ¼ standard permis-
sible limit of the ith parameter. The numerator gives the numerical
difference between the two values, but the algebraic sign (�) is
ignored.

2.3.2. Contamination index (Cd)
The contamination index (Cd) provides the degree of contami-

nation or cumulative effects of different quality parameters, which
are considered harmful to domestic water (Backman et al., 1997).
Therefore, Cd is the summation of all contamination factors that
exceed the upper permissible values, as shown in Eq. (4).

Cd ¼
Xn

i¼1

Cfi (4)

where Cfi ¼ CAi
CNi

� 1 represents contamination factor and CAi and CNi

are analytical value and upper permissible concentrations of the ith
component, respectively. The letter N denotes the ‘normative value’
and CNi is taken as MAC as given in Table 2. Cd values are generally
classified into three categories: low (Cd < 1), medium (Cd ¼ 1e3),
and high (Cd > 3) depending on contamination level.

2.3.3. Heavy metal evaluation index (HEI)
The HEI method like the HPI gives the overall water quality

status with respect to heavy metal contents (Edet and Offiong,
2002). It is computed as in Eq. (5):

HEI ¼
Xn

i¼1

Hci
.
Hmaci (5)

where Hci is the measured value of the ith parameter and Hmaci is
the maximum/upper admissible concentrations of the ith param-
eter. This index is useful for the interpretation of pollution level and
is primarily used for easy calculation steps (Edet and Offiong, 2002;
Prasanna et al., 2012).

2.3.4. Heavy metal contamination index (HCI)
There are certain limitations of the above three indexing ap-

proaches as detailed in supplementary (Suppl.) Table S1 (elabora-
tion in Results and Discussion). To overcome these limitations, a
new approach, HCI, has been developed for assessment of heavy
metal contamination with partial modification of an existing
equation developed by Tiwari and Mishra (1985), which is pri-
marily meant for evaluation of water quality based on physico-
chemical parameters such as pH, electrical conductivity, total
dissolved solids, total hardness, major cations (Ca2þ, Mg2þ, Naþ, Kþ)
and anions (HCO3

�, CO3
2�, Cl�, NO3

�, F�, SO4
2�). The proposed HCI, on

the other hand, is based on heavy metal parameters such as, Cd, Cr,
Cu, Fe, Mn, Ni, Pb and Zn. The modification and development
processes of this index have been divided into four stages as
described below.

Table 2
Standard values for computation of pollution indices (after Edet and Offiong, 2002).

Parameters W S I MAC

As 0.02 50 10 50
Cd 0.37 5 3 3
Cr 0.02 50 50 50
Cu 0.001 1000 2000 1000
Fe 0.006 300 200 200
Mn 0.02 100 500 50
Ni 0.05 20 20 20
Pb 0.75 100 10 1.5
Zn 0.0002 5000 3000 5000

Abbreviations.
W ¼ weightage (K/MAC).
S ¼ Standard permissible limit in mg/L.
I ¼ Highest permissible limit in mg/L.
MAC ¼ Maximum admissible concentrations/upper permissible limit in mg/L.
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2.3.4.1. Selection of water quality parameters. Water quality moni-
toring is essential for assessing its suitability for various usages
such as drinking and irrigation (Thakur et al., 2016). Quality stan-
dards such as those developed by the World Health Organization
(WHO 2017) and Bureau of Indian Standards (BIS, 2012) are used in
India. But then, selection of chemical parameters for assessment
depends on the worker’s discretion depending on the pollution
sources and types of contaminants expected in a study area. In the
present study, on the basis of the industry types, manufacturing
products and effluents generated (Table 1), nine heavy metal pa-
rameters As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn are considered for
assessment based on their impact on human health
(Suppl. Table S2). These nine parameters have been used for
development of the proposed HCI and its sub-indices.

2.3.4.2. Assignment of weightage for selected parameters.
Assignment of weightage on each selected parameter for the pro-
posed index is designed based on certain factors such as classifi-
cation of the parameter as essential (necessary for human diet) or
non-essential element, its carcinogenicity, health implications
(acute, chronic and long-term effects) and importance in water
quality evaluation. Cr, Cu, Fe, Mn and Zn are essential trace ele-
ments required in tiny amount by human body (Suppl. Table S2),
while As, Cd, Ni and Pb are not required in human diet. The excess
amount or deficiency of essential elements and presence of non-
essential elements may cause numerous malfunctions in human
body. Weightage refers to the relative importance and response of
the selected parameter in the final result of the proposed HCI. On
the basis of Delphi studies carried out by various workers (Horton,
1965; Brown et al., 1971; Lumb et al., 2011; Mohebbi et al., 2013),
weights range from 1 to 4 with the maximumweight of 4 assigned
to the highly carcinogenic parameters such as, Cd, Cr, Ni and Pb.
These weight values are important inwater quality assessment and
human health toxicity (Suppl. Table S2). The minimumweight of 1
is given to Fe since it does not play any significant role in water
quality appraisal (Mohebbi et al., 2013). The weightage assigned to
each selected parameter in this study is given in Suppl. Table S3.

2.3.4.3. Calculation of the proposed HCI. The equation by Tiwari and
Mishra (1985) defines water quality index (WQI) conventionally
used in quality classification of water. But, this equation is very
complex and requires log table for calculation purpose.

WQI ¼ antilog
Pn

i¼1WilogqiPn
i¼1Wi

(6)

where Wi ¼ relative weight of the ith parameter, qi ¼ quality
rating of the ith parameter.

The sub-index for each chemical parameter is solved in the
following manners in WQI and HPI, respectively.

qi ¼100 � fVa � Vig
ðVS � ViÞ

; and (7)

Qi ¼100 � fMið�ÞIig
ðSi � IiÞ

(8)

where Va orMi ¼measured value of the ith parameter, Vs or Si ¼ its
standard value, Vi ¼ its ideal value, which is taken as 0 (zero) for
major cations and anions, except for pH (¼ 7 or 7.5, ideal value) and
DO (¼ 14.6, ideal value), and Ii ¼ its desirable limit.

There are some problems with the WQI equation: (i) it is not
very clear whether to consider the desirable or permissible or
maximum acceptable limit of BIS or WHO or any other interna-
tional standard as the standard value (Vs) for the ith parameter, (ii)
ideal value (Vi) is taken as zero assuming the pure state or ideal
state of water without contamination, but getting such a state of
water is very unusual considering the dynamic nature of the
environment, and (iii) the calculation process is very complex and
not user-friendly due to frequent use of log tables.

Limitations have also been identified in HPI (Mohan et al., 1996)
equation as follows. (i) Problem arises in the calculation of quality
rating (Qi) of the heavy metals on the basis of the latest BIS (2012)
and WHO (2017) standards, where only permissible limits or
maximum allowance limits of heavy metals, such as those of Ba, Fe,
Cd, Cr, Pb, Hg, Ni, and Se, are provided while HPI actually requires
desirable limit (Ii) as the ideal value, which cannot be zero. (ii) The
algebraic sign (�) is ignored in the calculation of numerator value.
This means, taking Mn as an example for which 100 mg/L is the
desirable limit, if there are two samples having Mn concentrations
of 70 mg/L and 130 mg/L (measured parameter, Mi), then both
samples will have the same HPI quality rating value since the dif-
ference of the measured parameter value (Mi) and desirable value
(Ii) will be 30 mg/L for both these samples (viz. 70e100 ¼ �30, but
the minus symbol is neglected, so it becomes þ30, and
130e100 ¼ 30) although the quality of the first sample with
Mn ¼ 70 mg/L is much better than the second sample with
Mn ¼ 130 mg/L (iii) The denominator of quality rating or sub-index
of heavy metals is calculated by the difference of permissible limit
and desirable limit, but many heavy metals (e.g. Ba, Fe, Cd, Cr, Pb,
Hg, Ni, and Se) do not have desirable limits thus leading to inac-
curacy in HPI index calculation.

The expression of quality rating or sub-index (qi or Qi) in both
WQI and HPI adds to a lot of confusion amongst the researchers.
Since the ideal values (Vi) of cation and anion parameters are zero
in the calculation of sub-index forWQI, the expression does not add
significant value to the equation and its final result. The calculation
of HPI becomes difficult and biased due to the absence of desirable
limit of the metals since the latest water quality standards of BIS
(2012) and WHO (2017) as well as other international water stan-
dards provide only maximum acceptable limits (permissible limits)
for many heavy metals, such as Ba, Fe, Cd, Cr, Pb, Hg, Ni, and Se.
Thus, use of WQI and HPI becomes highly restricted.

In order to simplify the equations, therefore, in the proposed HCI
method, we have removed the ideal value or desirable value
(Vi or Ii) expression because it is biased and is not a valid assess-
ment of water quality. HCI is calculated using the following steps.

First, the unit weight (Wi) of each of the nine parameters (As, Cd,
Cr, Cu, Fe, Mn, Ni, Pb and Zn) is computed by dividing the assigned
weightage by its relative weight using the following formula (9):

Wi ¼ AwiPn
i¼1Awi

(9)

where Wi ¼ relative weight of the input parameter, Awi ¼ assigned
weight of the input parameter, n ¼ number of parameters.
Suppl. Table S3 gives the international standards (Edet and Offiong,
2002), assigned weights of individual parameters and calculated
unit weights (Wi).

The quality rating (qi) scale of a selected parameter in each
water sample is calculated by dividing its concentrations by its
respective permissible limit and multiplying the results by 100
using Eq. (10)
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qi ¼
Ci
Si

� 100 (10)

where qi ¼ the quality rating of a selected parameter, Ci ¼ the
concentrations of the selected parameter and Si ¼ its permissible
limit. The summation of all unit weights of heavy metal parameters

(
Pn
i¼1

WiÞ, i.e., the denominator in the WQI equation, is always equal

to 1 or approximates to 1. Therefore, the denominator component
has been removed from the WQI equation in the proposed index
(HCI).

Finally, for computing HCI, the metal sub-index (MI) is first
determined for each parameter as in Eq. (11). The sum of MI values
gives the heavy metal contamination index for each sample using
Eq. (12).

MIi ¼Wi � qi (11)

HCI ¼
Xn

i¼1

MIi (12)

where MIi ¼ the sub-index of the ith parameter, Wi ¼ the unit
weight of the ith parameter, qi¼ the rating based on concentrations
of the ith parameter and n ¼ the number of parameters.

So, the proposed HCI method is different from WQI as well as
HPI. In fact, HCI uses much simpler equations than those of WQI
and HPI, and works very well for heavy metals appraisal even
without the availability of desirable limits of some parameters such
as Ba, Fe, Cd, Cr, Pb, Hg, Ni, and Se. HCI methods can be used to
calculate all the heavy metal parameters by the permissible limits
and maximum acceptable limits of both the latest and older ver-
sions of BIS and WHO water quality standards. Moreover, analyses
in this work show that HCI is a superior index compared to others
and is also well-supported by chemometric analyses. The essential
differences between WQI and HCI are given in Suppl. Table S4.

2.3.4.4. Categorization of HCI water classes. The objective of
developing water classes is to determine the actual quality status of
different sampling locations. Normally, different water quality
indices developed by various researchers categorize only five water
classes for drinking purposes (Lumb et al., 2011). These types of
classification consider only the water quality scale, such as excel-
lent, good, poor, very poor and unfit, without considering the
regulatory limits of concerned parameters, human health risk and
toxicity of the violator parameters. The HCI water class has been
developed so that the mean index value is considered as the
threshold marker for development of water classes. Three equi-
distant division scales are marked above and below the HCI mean
value to rank the water classes in agreement with the regulatory
limits (Suppl. Table S5). Here, each measured parameter is pur-
posefully compared with its standard limit to identify the violator
parameter(s) in each water class and to assess its corresponding
toxicity level. Groundwater samples with a greater number of
deflected parameters in accordance with the regulatory limits will
be of inferior quality and may pose serious threat to human health
and vice versa. The adverse human health risks associated with
each measured heavy metal parameters are discussed in
Suppl. Table S2. Further, the toxicity risk of a single violator
parameter on human health will be minimal as compared to the
combined effect of multiple violator parameters in a water sample.
The maximum value in the water-quality index has been kept at
100 for drinking purpose in this classification, so 0 indicates
excellent water quality and 100 indicates poor water quality. Water

samples having HCI value above 100 are considered unfit for
drinking. The proposed HCI classifies the water samples in six
distinct classes namely excellent, good, marginal, poor, very poor
and unfit as given Suppl. Table S5.

2.4. Chemometric analysis

Chemometric statistical techniques that include Principal
Component Analysis (PCA) and Cluster Analysis (CA) have been
effectively applied by many workers to extract the reliable sources
of heavy metals in water (Yuan et al., 2014; Herojeet et al., 2015;
Mehrabi et al., 2015). PCA is essentially used for reduction of large
complex data matrices to provide meaningful information on the
important parameters and better interpretation of variables (Singh
et al., 2004, 2019; Herojeet et al., 2017). In the present study, prior
to statistical analysis, all chemical parameters irrespective of their
units were standardized (z-scale) individually with their mean
values (zero) and standard deviations to get dimensionless values
(Simeonov et al., 2004; Khanoranga and Khalid, 2019). Principal
components (PCs) were extracted using varimax rotation method
where the eigenvalues >1 is statistically accepted for interpreting
results (Kaiser, 1960; Shrestha and Kazama, 2007). Cluster Analysis
was used to classify a set of objects into similar groups (Wai et al.,
2010). The clustering procedure was performed by Ward’s linkage
method (Otto, 1998) and similarity distance was measured by
squared Euclidean distance on standardized raw data (z-trans-
formation). The Sneath’s test technique was used to determine the
significance of cluster (Papazova and Simeonova, 2013). GIS soft-
ware Mapinfo 6.5 and Vertical Mapper 3.0 were employed for
spatial map preparation. A Microsoft Excel 2007 and Minitab 16
software were used for all data calculations and statistical analyses.

3. Results and Discussions

3.1. Groundwater conditions

The Nalagarh valley has a northwest-southeast (NW-SE)
extension delimited by the river Sirsa on the south-west and the
Siwalik Hills on the north-east. The geology of the area is very
complex with a long history of tectonic activities (Khan, 1988).
Stratigraphically, the Tertiary formations of the Siwaliks bound the
valley and its flanks. Sandstones, quartzites, limestones, phyllites,
slates and shales are the prominent rock types that are highly
fractured along the faults and thrusts. Nalagarh thrust is a major
fault marked by the two NW-SE trending tectonic zones. The Sirsa
River flows along the Surajpur Fault (Khan, 1970). Groundwater in
the valley occurs in pervious unconsolidated alluvial formations
consisting of silt, sand, gravels, pebbles and cobbles with little clay
under both phreatic and confined conditions (CGWB, 2007). These
are relatively loose river borne valley filled deposits underlying the
flood plains and the terraces of the river system. The average annual
rainfall of the valley is about 1129.3 mm/year with approximately
64 rainy days in a year. Rainy season (July to September) gives
around 83% of the rainfall forming the main source of groundwater
recharge. The depth to groundwater level varies from near ground
surface to 10 m below ground level (mbgl) (May 2014) in the main
valley and increases towards the hills as the land surface rises
(Fig. 2). Groundwater is being developed in the area by medium to
deep tubewells, dug wells and dug-cum-bored wells. Depths of
open dugwells and dug-cum-boredwells range from 4 to 60m. The
yield of shallow aquifer is moderate with well discharges going up
to 10 L per second (lps). Deeper semi-confined aquifers are being
developed by tubewells ranging in depth from 65 to 120 m tapping
about 25e35 m granular zones (CGWB, 2008). Exploitation of the
groundwater resources due to indiscriminate industrial activities
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and rapidly growing unplanned urbanization has caused decline in
the water levels (Herojeet et al., 2016). The area also lacks paved
sewerage system and engineered sanitation facilities which cause
leaching of the untreated domestic wastewater and industrial
effluent into the subsurface.

3.2. Water chemistry and classification

Physicochemical and heavy metal composition of groundwater
samples are presented in Table 3. Table 4 gives the descriptive

statistics that include minimum, maximum, mean, standard devi-
ation and sample percentages exceeding the desirable and
permissible limits prescribed by the Bureau of Indian Standards
(BIS) (2012) and World Health Organization (WHO, 2017) for
drinking water. Both pH and EC exceed these permissible limits in
about 7% of the samples, whereas total dissolved solids (TDS)
exceed the desirable limit in 53% of samples. Highest value of EC
(1513 mS/cm) and TDS (922 mg/L) could be due to seepages from
domestic wastewater and industrial effluents as the valley lacks
adequate drainage facilities. Concentrations of the heavy metals

Fig. 2. Depth to water levels in the Nalagarh valley, Himachal Pradesh, India.

Table 3
Physicochemical and heavy metals composition of groundwater samples in Nalagarh valley, H$P., India.

S. No. Locations Longitude Latitude pH EC mS/cm at 25 �C TDS mg/L As Cd Cr Cu Fe Mn Ni Pb Zn
P

Heavy Metal mg/L

(degrees in decimal) mg/L

G1 Lahrondi 76.8202 30.8947 7.86 569 370 6 4 0 19 150 93 65 37 119 0.493
G2 Barotiwala 76.8394 30.9045 7.99 500 324 7 4 12 113 860 44 35 46 624 1.745
G3 SitoMajra 76.8177 30.9095 8.7 535 347 4 4 6 17 18 13 56 41 248 0.407
G4 Thar Majra 76.8353 30.9261 7.64 663 428 5 4 0 4 220 104 50 25 56 0.468
G5 Dongrawala 76.8415 30.9216 8.21 688 446 9 0 21 9 298 10 12 16 78 0.453
G6 Nariyanwala 76.8067 30.9181 7.27 844 548 2 7 4 4 490 31 85 30 563 1.216
G7 Baddi 76.7965 30.9275 7.32 917 595 8 0 66 30 536 13 17 62 1180 1.912
G8 Sandholi 76.7825 30.9384 7.29 1293 840 9 0 94 12 1366 59 32 23 213 1.808
G9 Malpur 76.7798 30.9479 7.69 520 338 9 0 6 1 333 12 15 11 105 0.492
G10 MakhruMajra 76.7822 30.9592 7.38 954 620 9 0 23 4 322 21 20 21 216 0.636
G11 DalwalMajra 76.755 30.9731 7.46 760 492 7 0 73 13 1212 183 40 20 700 2.248
G12 Manpura 76.7822 30.9873 7.17 1099 706 3 0 90 74 1021 192 52 18 811 2.261
G13 KheraChak 76.7209 31.0102 7.44 846 547 10 0 23 27 395 19 11 20 63 0.568
G14 DaddiKania 76.721 31.0411 7.30 1055 684 10 1 55 0 389 17 16 28 78 0.594
G15 Nalagarh 76.7205 31.0973 7.30 1513 992 6 0 83 7 893 221 25 20 174 1.429
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decrease as follows: Fe > Zn > Mn > Cr > Ni > Pb > Cu > As > Cd.
While As, Cu, Mn and Zn concentrations are below the permissible
limits for drinking water (BIS, 2012), As content is just touching the
desirable limit of 10 mg/L in 13% of samples and about 27% of
samples shows Mn concentrations in excess of 100 mg/L (desirable
limit). The concentrations of Cd and Cr exceed the permissible
limits (BIS, 2012) of 3 mg/L and 50 mg/L, respectively, in 33% ans 40%
of samples. Both Fe and Ni exceed their permissible limits in 73%
(300 mg/L) and 67% (20 mg/L) of samples, respectively. Pb concen-
trations exceed the permissible limit (10 mg/L) in all samples. The
excess concentrations of Cd, Cr, Fe, Ni and Pb above the permissible
limits and higher contents of Mn above the desirable limits in
groundwater may be due to anthropogenic activities related to
opencast mining of limestone and other construction materials,
illegal disposal of industrial effluent and domestic sewerage be-
sides geogenic inputs.

The method of Ficklin et al. (1992), modified by Caboi et al.
(1999), has been applied for classification of groundwater. The
relationship between the water pH and

P
heavy metals

(As þ Cd þ Cr þ Cu þ Fe þ Mn þ Ni þ Pb þ Zn mg/L) (Fig. 3) shows
that 8 (53%) and 7 (~47%) sampling locations contain near neutral-
lowmetals and near neutral-highmetals, respectively. This method
indicates the influence of heavy metals on pH at individual sam-
pling locations.

3.3. Evaluation of pollution indices

Evaluation of groundwater contamination has been carried out
by applying the conventionally used pollution indices (HPI, Cd, HEI)
and the newly proposed HCI independently by using international
standards (Edet and Offiong, 2002). Results are presented in
Table 5. HPI values vary between 10.73 and 107.50 with a mean of
43.59. Except for G6 (107.50), all other sampling locations showHPI
values less than the critical limit of 100 for drinking water (Prasad
and Bose, 2001). The range and mean values of Cd are 1.31e37.87
and 17.06, respectively. The Cd values exceed 3 at 14 out of 15
sampling locations indicating high contamination level while one
sampling location (G9) belongs to medium contamination level for
domestic purposes (Backman et al., 1997). The HEI varies from 10.31
to 46.87 with a mean value of 26.06, but since there is no critical
limit defined for HEI, assessment of contamination level in this
method depends on the worker’s discretion.

The critical limit of 100 in HPI method seems too broad a scale to
assess water quality since the excess concentrations of a particular

trace metal can prove very harmful to human health and the
environment. Cd computation does not take into account any
analytical value that lies below the upper permissible limit for
drinking water with the logic that such a concentration would not
pose any health effect and environmental threat. Further, in Cd
method, the analytical values need to be normalized, which in-
creases the complexity of the evaluation process. In order to attain
uniformity, since each chemical parameter contributes to the
hydrochemical quality of a water body, it is essential that all
analytical values are considered for evaluation process irrespective
of whether these values lie above or below their respective
permissible limits. HEI method does not have a scale for evaluation,
and the interpretation is through multiple mean value approach
(i.e., index values lying above or below the mean) to define the
critical limit of a particular parameter. Therefore, the demarcation
of a scale in HEI method becomes too arbitrary and study specific.
From the above discussion, it really becomes very confusing as to
which indexing method to use because of their limitations. An
evaluative comparison of these pollution indices is shown in
Suppl. Table S1, which is self-explanatory. HCI method, thus, has
been developed to satisfy these limitations. HCI values in the study
area range from 21.51 to 99.87 with a mean value of 60.17 (Table 5).
All the groundwater samples are below the maximum of 100,
although sampling locations G1, G2, G3, G4, G6, G8, G11, G12 and
G15 show high HCI values. Further analyses are given below.

Linear regression is applied among the pollution indices and
heavy metal parameter in order to identify the significant param-
eters influencing each pollution index. Table 6 presents the good-
ness of model (r value, significant at p value < 0.01 and < 0.05)
between the pollution indices (HPI, Cd, HEI and HCI) and heavy
metal parameters. While HPI shows strong correlation with four
parameters As (r ¼ 0.706), Cd (r ¼ 0.963), Ni (r ¼ 0.836) and Pb
(r ¼ 0.566), Cd and HEI have the similar loading on two parameters
Pb (r¼ 0.915) and Zn (r¼ 0.703), respectively. The HCI, on the other
hand, shows strong correlation with five parameters, namely As
(r ¼ 0.859), Fe (r ¼ 0.546), Mn (r ¼ 0.683), Ni (r ¼ 0.756) and Pb
(r ¼ 0.859). The correlation between HPI, Cd, HEI and HCI is sig-
nificant at p value < 0.01 and < 0.05. It becomes very clear from the
regression analysis that among the pollution indices, the proposed
HCI method has the maximum correlated parameters influencing
the groundwater quality. A pollution index with more numbers of
key contributing parameters reflects its authenticity and reliability
as amethod to provide valuable information on the overall status of
heavy metal contamination in a water sample.

Table 4
Statistical analyses of groundwater samples in Nalagarh valley, H$P., India.

Parameters Units Min. Max. Mean ± Standard
Deviation (SD)

Drinking Water Primary Drinking Water Standard

WHO (2017) BIS (2012) USEPA (2019)

Guideline
value (GV)

% above
the GV

Desirable
limits (DL)

Permissible
limits (PL)

% above
DL

% above
PL

Maximum Contaminant
Level (MCL)

% above
MCL

pH 7.17 8.7 7.60 ± 0.43 6.5e8.5 6.67 6.5e8.5 6.67
EC mS/

cm
500 1513 850.40 ± 286.90 1500 6.67 1500a 6.67

TDS mg/L 324 922 551.80 ± 194.08 600 33.33 500 2000 53.33 Nil
As mg/L 2 10 6.93 ± 2.55 10 NIL 10 50 NIL Nil 50 NIL
Cd mg/L 0 7 1.60 ± 2.32 3 33.33 3 33.33 5 6.67
Cr mg/L 0 94 37.07 ± 35.51 50 40.0 50 40.0 100 NIL
Cu mg/L 0 113 22.267 ± 31.14 2000 NIL 500 1500 Nil Nil 1300 NIL
Fe mg/L 8 1366 566.27 ± 405.64 300 73.33 300 73.33
Mn mg/L 10 221 68.80 ± 73.54 100 26.67 100 300 26.67 Nil
Ni mg/L 11 85 35.40 ± 22.20 70 6.67 20 66.67
Pb mg/L 11 62 27.87 ± 13.47 10 100 10 100 15 86.67%
Zn mg/L 56 1180 348.53 ± 343.57 3000 NIL 5000 15,000 Nil Nil

a Since BIS (2012) does not specify any guideline value, WHO (2011) guideline value has been considered.
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The mean deviation and the percent deviation with respect to
the mean value of HCI (60.17) are enumerated for each sampling
location in Table 7. The sampling locations (G1, G2, G3, G4, G6, G8,
G11, G12 and G15) with high HCI values (Table 5) show high mean
deviations and percent deviations (Table 7). The remaining sam-
pling locations (G5, G7, G9, G10, G13 and G14) have lower HCI
values than the mean value, and therefore show negative mean
deviations and percent deviations. This simply indicates that the
groundwaters quality at these locations are least influenced by
heavy metals.

HCI values are further evaluated as per the newly developed
water classes as shown in Suppl. Table S5. The sampling locations
G5, G9, G10 and G13 fall in good water class (HCI values 21e40), G7
and G14 in marginal class (HCI values 41e60), G1, G2, G3, G4, G8
and G15 in poor class (HCI values 61e80) and G6, G11 and G12 in
very poor class (HCI values 81e100), respectively. None of the
sampling locations fall in excellent water class (HCI values 0e20).
Similarly, no water sample falls under unfit category (HCI
value > 100). As already discussed earlier, Pb (prescribed limit
10 mg/L) has been the violator parameter in all groundwater

Fig. 3. Classification of groundwater samples (pH vs. metal load).

Table 5
Values of water pollution indices for individual sampling locations in the Nalagarh
valley, H$P., India.

Sampling Locations HPI Cd HEI HCI

G1 78.753 23.023 32.023 74.6741
G2 76.777 30.548 39.548 65.095
G3 77.476 23.083 32.083 60.9569
G4 68.432 14.795 23.795 63.8741
G5 13.53 4.581 13.581 23.6268
G6 107.5 20.89 29.89 95.1433
G7 43.757 37.869 46.869 53.8607
G8 25.861 18.058 27.058 76.3437
G9 10.73 1.31 10.31 21.5113
G10 18.627 8.717 17.717 32.3771
G11 27.828 17.806 26.806 88.3789
G12 29.983 16.641 25.641 99.8721
G13 16.005 7.938 16.938 26.4596
G14 32.932 14.401 23.401 42.1225
G15 25.636 16.29 25.29 78.3302
Mean 43.588 17.063 26.063 60.1751
Min 10.73 1.31 10.31 21.5113
Max 107.5 37.869 46.869 99.8721
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samples collected because of industrial nature of the study area.
However, its concentration increases from superior to inferior
water classes. For example, in ‘good’ water class, its concentrations
vary between 11 and 21 mg/L (Table 3), while in ‘marginal’ water
class they range from 28 to 62 mg/L. Although in ‘poor’ and ‘very
poor’ water classes Pb concentrations are lesser in some samples
(G12, G15), other violator parameters have comparatively much
higher concentrations. For example, in water sample G12 (very
poor water class), Pb concentrations are 18 mg/L, but Cr and Ni
concentrations are 90 and 52 mg/L, respectively, much above their
respective permissible limits, i.e., 50 and 20 mg/L.

It is important to note here that good water class has a single
violator parameter (Pb) depicting low toxicity, marginal water class
has two violator parameters (Cr and Pb) suggesting moderate
toxicity and poor to very poor water classes have multiple violator

parameters (Cd, Cr, Ni and Pb) indicating strong to excessive
toxicity levels on human health. In ‘good’ water class public action
may or not be necessary for dilution of contamination for drinking
purposes. If at all a public action is necessary, the action level will
be minimal and localized. For example, the maximum contamina-
tion level (MCL) of Pb allowed in drinking water before a public
action is required is 15 mg/L (USEPA, 2019; Jurgens et al., 2019) and
the maximum deviation from this MCL is 6 mg/L for sample G10
(Pb ¼ 21 mg/L) that may need only milder treatment as per Lead
Copper Rule suggested by USEPA (1991, 2019). In ‘marginal’water
class, however, public action may possibly be necessary for
reduction of pollution level, so is the casewith other water classes if
the groundwater is to be used for drinking purposes. Lower order
classesmay, however, be used for other usages such as for irrigation
and livestock depending on their contamination level as recom-
mended by the Food and Agriculture Organization (FAO, 1994). It
can thus be inferred that the newly developed HCI water classes not
only allow understanding of the groundwater quality in each
sampling location, but also conform with the regulatory limits and
help in extracting the violator parameters as well as in assessing the
toxicity level of each individual class on human health.

It is interesting to note here that the sampling locations that
have negative mean deviation and percent deviation values fall in
good and marginal water classes and have low to moderate toxicity
level with least number of violator parameters, which denote better
water quality. The remaining samples that have positive mean
deviations and percent deviations have multiple violator parame-
ters and show high risk of toxicity (poor and very poor) indicating
that the groundwater samples are contaminated by heavy metals.
Groundwater at these locations thus require proper treatment
before human consumption. The metal distribution in the Nalagarh
valley based on HCI water class is shown in Fig. 4. It is observed that
the southwestern portion of the Barotiwala industrial area and
Baddi industrial complex in central part fall under poor to very poor
water classes. The findings of the proposed HCI method and asso-
ciated water classes (Suppl. Table S5) are coherent with the results
of the mean deviations and percent deviations found at each
sampling location (Table 7).

3.4. Identification of heavy metal sources

Chemometric techniques, namely PCA and CA, were used to
identify the different pollution sources affecting the analysed pa-
rameters of groundwater samples. Varimax rotation method
extracted four linear PCs (Singh et al., 2004, 2005), which explains
86.4% of the overall variance (Table 8). Principal components (PCs)
with loading coefficient of >0.75 (labeled bold) are highly signifi-
cant while those between 0.5 and 0.75 (italics, bold) are moderately
significant for PCA interpretation. Principal Component 1 (PC1)
explains 34.4% of the total variance with strong negative loading on
pH, strong positive loading on Cr, andmoderate positive score on Fe
and Mn indicating mineralized water due to high TDS and EC,
which are controlled by lithogenic factor. High loading of Cr may be
attributed to the dissolution and oxidation of chromite (FeCr2O4)
present in the host rock (Hem, 1991; Chen et al., 2007). The
weathering and dissolution of local bedrock is the key sources of Fe
and Mn. Negative score on pH strongly controls the solubility of Fe
and Mn in groundwater depending on anions content and redox
potential, especially at near neutral pH (ATSDR, 2000; Lorite-
Herrera et al., 2008).

Principal Component 2 (PC2) accounts for 22.6% of the total
variance with strong positive loading on As and negative score on
Cd and Ni. This may be attributed to the anthropogenic factors such
as industrial effluent, unplanned urbanization and agricultural
runoff (Wu et al., 2008; Huang et al., 2014; Wagh et al., 2018). The

Table 6
Correlation analysis between pollution indices and heavy metal parameters.

Parameters HPI Cd HEI HCI

As 0.706* 0.358 0.358 0.764
p value 0.003 0.019 0.190 0.001
Cd 0.963* 0.377 0.377 0.380
p value 0.000 0.166 0.166 0.163
Cr 0.486 0.153 0.153 0.388
p value 0.066 0.585 0.585 0.153
Cu 0.202 0.468 0.468 0.268
p value 0.470 0.078 0.078 0.335
Fe 0.262 0.184 0.184 0.546**
p value 0.345 0.511 0.511 0.035
Mn 0.087 0.063 0.063 0.683*
p value 0.758 0.825 0.825 0.005
Ni 0.836* 0.367 0.367 0.756*
p value 0.000 0.179 0.179 0.001
Pb 0.566** 0.915* 0.915* 0.859*
p value 0.028 0.000 0.000 0.000
Zn 0.194 0.703* 0.703* 0.405
p value 0.488 0.003 0.003 0.074
HPI 1 0.602** 0.602** 0.509**
p value 0.018 0.018 0.053
Cd 0.602** 1 0.99* 0.523**
p value 0.018 0.00 0.047
HEI 0.602** 0.99* 1 0.523**
p value 0.018 0.000 0.047
HCI 0.509** 0.523** 0.523** 1
p value 0.053 0.047 0.047

Bold indicates strong correlation between the pollution indices and heavy metal
parameters. Bold-Italics indicates goodness of model significant at p value <0.01 and
<0.05. **Correlation is significant at the 0.05 level.
*Correlation is significant at the 0.01 level.

Table 7
Mean deviation and % deviation with respect to the mean value of HCI (61.92) for
each sampling location.

S. Nos. HCI mean deviations HCI % deviations

G1 14.499 24.095
G2 4.920 8.176
G3 0.782 1.299
G4 3.699 6.147
G5 �36.548 �60.737
G6 34.968 58.111
G7 �6.314 �10.493
G8 16.169 26.869
G9 �38.664 �64.252
G10 �27.798 �46.195
G11 28.204 46.870
G12 39.697 65.969
G13 �33.716 �56.029
G14 �18.053 �30.000
G15 18.155 30.170
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negative correlation of Cd and Ni with As indicates anthropogenic
sources localized in the study area (Mehrabi et al., 2015). Arsenic
contamination in the area comes mainly from paint, pharmaceu-
tical, fertilizer and pesticide industries (Aradhi et al., 2009; Krishna
and Mohan, 2014), while higher concentrations of Cd and Ni could
be due to chemical, electrical, electronics and steel industries

(Table 1). Saadia et al. (2008) also suggest that Cd and Ni originate
from industrial effluent and waste discharges from other types
industries.

Principal Component 3 (PC3) is responsible for 16.3% of the
cumulative variance that indicates strong positive score on Cu and
gives moderate weight on Fe and Zn. Fe is uniformly distributed in

Fig. 4. Distribution of heavy metal pollution levels (based on HCI).

Table 8
Varimax rotated component matrix of the analysed groundwater samples.

Variables PC1 PC2 PC3 PC4 Communality

pH ¡0.815 �0.044 �0.003 0.032 0.667
EC 0.952 0.095 �0.067 0.100 0.929
TDS 0.950 0.095 �0.073 0.100 0.927
As �0.013 0.941 �0.186 0.006 0.920
Cd �0.408 ¡0.798 �0.171 �0.251 0.895
Cr 0.844 0.227 0.390 0.053 0.918
Cu �0.190 �0.051 0.839 �0.218 0.791
Fe 0.628 0.057 0.626 0.160 0.815
Mn 0.506 �0.355 0.450 0.495 0.829
Ni �0.086 ¡0.967 0.034 �0.039 0.945
Pb �0.144 �0.153 0.176 ¡0.900 0.885
Zn 0.252 �0.165 0.635 �0.591 0.843
Eigen values 4.71 2.87 1.78 1.00
% of variance 34.4 22.6 16.3 13.1
Cumulative %

of variance
34.4 57.0 73.3 86.4

Probable sources Lithogenic Anthropogenic related to
industrial effluent, unplanned
urbanization and agricultural runoff

Weathering of bedrocks and
oxidation of iron bearing minerals

Mixed factors (anthropogenic
and geogenic processes)

PC¼ Principal component. Bold indicates strong correlation between the pollution indices and heavy metal parameters. Bold-Italics indicates goodness of model significant at
p value <0.01 and <0.05.
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the earth’s crust as the second most abundant element, while Zn
and Cu too have about the same abundance in crustal rocks (Hem,
1991; Malle, 1992). While the concentrations of Cu and Zn are well
within the desirable limits prescribed by the BIS (2012), Fe con-
centrations could be due to enhanced geogenic input resulting from
opencast and limestone mining activities in the study area
(Chirenje et al., 2007; Li et al., 2009; Herojeet et al., 2015; Hadzi
et al., 2018).

Lastly, 13.0% variance is illustrated by Principal Component 4
(PC4) which puts positive weight on Mn (moderate) and negative
score on Pb (strong) and Zn (moderate). The main sources of Zn are
sphalerite, smithsonite and franklinite minerals found in the study
area. The negative score on Zn is due to its adsorption on organic
and inorganic sediments. With co-precipitation with manganese
oxide, it tends to maintain low concentration levels in aquifers
(Hem, 1976, 1980). Thus, the concentrations of Mn and Zn are well
within the permissible limits of BIS (2012) reflecting natural factors.
Both Pb and Zn exhibit similar geochemical behaviours in most
natural processes (Reinmann and de Caritat, 1998; Mehrabi et al.,

2015). However, Pb concentrations are above the permissible
limit in all samples (BIS, 2012). The enhanced levels of Pb could be
due to agrochemical and industrial wastes released from fire
equipment, paint and pigments, printing, plumbing and battery
manufacturing plants (Romieu et al., 1994; Li et al., 2008; Devang
et al., 2014) (Table 1). This component representing the Pb, Mn
and Zn concentrations in groundwater is attributed to both
anthropogenic activities and geogenic processes.

Cluster Analysis is used to create dendrogram by grouping 15
different sampling locations of groundwater. The difference be-
tween each cluster pattern can be explained by special parameters
influencing them. Thus, the average value of each parameter within
a cluster is calculated in order to identify the specific tracers for
every cluster. Dendrogram divulges four clusters of significance
{(Dlink/Dmax) * 100 < 30} for groundwater (Fig. 5). Table 9 provides
their average values. Cluster 1 (C1) includes parameters with the
highest value of pH, Cd and Ni, and corresponds well with PC2. The
sampling locations grouped in C1 (G1, G4, G3, G6) indicate that
water pollution is primarily from the industrial effluent, sewage

Fig. 5. Dendrogram of groundwater sampling locations.

Table 9
Average values of the heavy metal parameters for each cluster.

Parameters C1 (G1,G4,G3,G6) C2 (G2,G7) C3 (G5,G9,G10,G13,G14) C4 (G8,G11,G12G15)

pH 7.87 7.66 7.60 7.31
EC (mS/cm) 652.75 708.5 812.6 1166.25
TDS (mg/l) 423.25 459.5 527 757.5
As (mg/L) 4.25 7.5 9.4 6.25
Cd (mg/L) 4.75 2.0 0.2 0
Cr (mg/L) 2.5 39.0 25.6 85
Cu (mg/L) 11.0 71.5 8.2 26.7
Fe (mg/L) 219.5 698.0 347.4 1123
Mn (mg/L) 60.25 28.5 15.8 163.75
Ni (mg/L) 64.0 26.0 14.8 37.25
Pb (mg/L) 33.25 54.0 19.2 20.25
Zn (mg/L) 246.5 902.0 108 474.5

Bold indicates the highest average value of a parameter among the four clusters.Bold-Italics indicates the second highest average value of a parameter to identify the special
tracer.
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and application of fertilizers and pesticides (OECD, 1994; WHO,
2005). Cluster 2 (C2) represents the smallest group of sampling
locations (G2, G7), and is distinguished by the maximum values of
Cu, Pb, Zn and higher loading of Fe, which may be attributed to the
mixed factors (anthropogenic and geogenic). Geogenic contami-
nation here could be due to mining activities (Ameh and Akpah,
2011). Cluster 2 correlates well with PC3 and PC4. The largest set
of sampling locations (G5, G9, G10, G13 and G14) belongs to cluster
3 (C3) that has only one parameter (As) corresponding to PC2.
Cluster 3 may be due to As contamination and may be attributed to
anthropogenic activities (Aradhi et al., 2009; Huang et al., 2014;
Herojeet et al., 2015). Lastly, cluster 4 (C4) depicts a pattern with
highest value of EC, TDS, Cr, Fe and Mn indicating that the naturally
occurring geological host rocks (aquifers/aquitards) contribute to
the water quality variations. The sampling locations (G8, G11, G12
and G15) in C4 embody background level (natural) of water quality
as in PC1.

The integration of analyses by CA and PCA strongly authenticate
that the groundwater is highly influenced by dissolution of local
bedrocks, redox reactions in clay minerals and various anthropo-
genic inputs. Thus, the two statistical chemometric techniques (PCA
and CA) show strong correlation in source apportionment as
elucidated from data matrices of the groundwater samples.

Cluster Analysis has been used to validate findings of the pro-
posed HCI method. When the sampling locations in each cluster are
compared with HCI water classes, the possible factors influencing
the contamination level in each water class are easily verified.
Sampling locations belonging to C1 (Table 9) are contaminated due
to anthropogenic factors and fall in poor to very poor HCI water
classes (Suppl. Table S5). The sampling locations of C2 are
controlled by mixed factors (geogenic and anthropogenic) and
belong to marginal to poor water classes. The sampling locations in
C3 are related to anthropogenic factors that have single special
parameter (As), but HCI water class shows that the individual
samples G5, G9, G10 and G13 that have relatively elevated As
concentrations fall in good water class and G14 in marginal water
class. This is due to fact that HCI calculates the overall heavy metal
contents in water samples. In fact, As concentrations are 9 mg/L at
three locations (G5, G9 and G10) and just touch the desirable limit
of 10 mg/L at two locations (G13 and G14), but are well within the
maximum permissible limit of 50 mg/L at all locations as per the BIS
(2012) standards. Therefore, slightly elevated concentrations of As
at these locations do not make much difference in classifying the
groundwater as good water type. Finally, C4 sampling locations are
controlled by the geogenic factors and fall in poor to very poor
water classes. The concentrations of Cr and Fe (G8, G11, G12 and
G15) and EC (G15) are above the permissible limits and TDS (G8,
G12 and G15) and Mn (G11, G12, G15) above the desirable limits of
BIS (2012) standards. The excess contents of these parameters
render the sampling locations fall in poor to very poor HCI classes.
All analyses show that the interpretations carried out by CA as well
as HCI are supportive to each other in their findings. It can be
inferred here that water quality decisions should not be made
based on HCI alone; some chemometric technique, preferably CA
(Lumb et al., 2011), should be used in combination with HCI water
classes to have a better assessment of groundwater quality. Even if
HCI classifies each sampling location into a different water class on
the basis of the aggregate content of mixed trace elements and their
toxicity level, CA identifies the potential heavy metals influencing
them and their possible sources. Based on the HCI water classes and
CA, remedial and preventive measures could be taken up at each
sampling location to prevent further groundwater contamination.
It becomes clear from the discussion above that the proposed HCI
method has more advantages and diverse applicability to assess
overall heavy metal contamination level in groundwater samples

compared to other indexing methods (HPI, Cd and HEI) discussed in
this paper.

4. Conclusions

Various pollution indices (HPI, Cd and HEI) including the pro-
posed indexing method, HCI, have been used along with the che-
mometric techniques to evaluate heavy metal contamination and
identify the possible sources of groundwater contamination. Each
conventionally used index has certain limitations in assessing
groundwater pollution. The HPI sets a critical limit of 100 for
drinking purposes, Cd exceeding 3 indicates heavy contamination
for domestic uses, and HEI method does not specify any critical
limit for human consumption. Application of these indices in
Nalagarh valley, Himachal Pradesh, India shows that while almost
all groundwater samples qualify for drinking purposes in HPI,
above 90% of them are rejected for domestic uses in Cd and in HEI
their assessment depends on the worker’s discretion. It thus be-
comes very confusing as to which indexing method to use. The
proposed HCI method satisfies this limitation by clearly assessing
contamination level at each sampling location using mean devia-
tion and percent deviation to classify the collected groundwater
samples into different water classes. Regression analysis reveals
that the HCI method has more significantly correlated key param-
eters than other indices justifying its greater reliability and wider
applicability. Chemometric analyses by PCA and CA confirm that Cr,
Cu, Fe, Mn and Zn are derived from lithogenic inputs and As, Cd, Ni
and Pb from anthropogenic sources. Also, when the sampling lo-
cations of each cluster are comparedwith the HCI water classes, the
violating parameters and their related sources become very clear.
Therefore, the newly proposed HCI method has definite advantage
over other indexing method in assessing heavy metal
contamination.

Analyses reveal that the contamination level in Nalagarh valley,
Himachal Pradesh, India gives a mixed picture in terms of
groundwater pollution. Since significant parts of the area still have
good quality groundwater, regulation is needed to monitor and
protect the groundwater resources from pollution. This work, in
particular, has significant implications for development of pollution
reduction strategies in the foothill zones of the Indian sub-
continent and elsewhere in the world to maintain a balance be-
tween the ecological integrity and industrialization, thereby mini-
mizing the rate and extent of large-scale contamination in the
future.
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